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Mass-balance models
Applied long time in exposure sciences: E.g. NF/FF model (Hemeon, 1955) and multi-
compartment model (Nazaroff, 1989)
Validated and tested*: Langstroth and Gillespie (1947), Corner and Pendlebury (1951), 
Nazaroff (1989), Furtaw et al. (1996), Nicas (1996;2016), Zhang et al. (2009), … 
Regulatory applicability evaluated (Jayjock et al., 2011, EPA???)
Models are widely available: E.g. PANDORA, MOEEBIUS, CONTAM, IH-MOD 2.0 , TEAS, 
GuideNano, and ConsExpo
Broadly developed, such as: 
• Bayesian approach (e.g. Zhang et al. 2009)
• Physical and chemical processes: e.g. deposition, coagulation, condensation, evaporation, 

and chemical transformations (e.g. Seinfeld & Pandis, 2016)
• Parameter measurements: Emission libraries (VOC ~9000, mVOC ~2000), emission control 

efficacy libraries (>400), air mixing (~100) and ventilation (Q) (see review from Koivisto et 
al. 2019)

• Default values (e.g. Bremmer et al., 2006 and Oltmanns et al., 2015)
Can be combined with other models: E.g. 
• Ambient air pollution (Hussein et al. 2015), 
• Surface contamination (Schneider et al. 1999), and 
• Physiologically based toxicokinetic models (Webster et al. 2016)
Applicable for both consumer and occupational exposure assessment

Example: General form of indoor mass 
balance model (William Nazaroff, 1989)

*Validation = Testing that the model theory (within boundaries) agree with 
observations (within tolerances) and computational algorithms are correct.

Example: NF/FF model validation (Furtaw et 
al., 1996)

https://www.tandfonline.com/doi/abs/10.1080/10789669.2011.579877
https://www.moeebius.eu/images/MOEEBIUS_D3.5_MOEEBIUS_Indoor_Air_Quality_Assessment_Models_V1.0.pdf
https://www.nist.gov/services-resources/software/contam
https://ihmod.org/
https://www.easinc.co/
https://tool.guidenano.eu/
https://www.rivm.nl/en/consexpo


Parameterization

Jayjock and Havics (2018)

Conservative estimate for 
AER: Lowest 5% percentile

More realistic AER estimate: 
Mean 1.06 [0.45 (25%); 1.32 (75%)]

Easy to understand:
• Parameters are physical quantities (measurables)
• No conversions (“as observed”)
• Variation and uncertainties can be quantified

Parameters relative effects are easy to estimate (e.g. particle 
removal rate via deposition vs. ventilation):
• Can be used to justify complex models simplification!

Can be extended for unique processes, such as e.g.:
• Air flows across open/closed doors (McGarth et al. 2014)
• Air cleaner particle removal rates (Mølgaard et al. 2015)
• Photoactive surfaces (Shayegan et al. 2018)
• Recirculation air filtration efficiencies from manufacturers

Example of assessing default value for 
households air exchange ratio
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Conservativity

• Defined by parameterization and model construct

• Follows “truly” tiered approach: Reducing model complexity 
increases conservativity (e.g. 1-parameter model very 
simple but highly conservative)

• Conservativity is well-justified (i.e., can be quantified) and is 
not only based on model variation or uncertainty

• Conservativity can be assigned parameter basis, such as e.g. source is 
measured but use conditions are not specified  conservative single 
box model

• Common default values can be set at international level to 
ensure harmonization and conservativity

Tielemans et al. (2007)



Predictability (model testing/validation/…)

• The NF/FF model predictability usually within the range 
of 0.5- to 2-fold (Jayjock et al. 2011; the Figure), Arnold 
et al., 2016

• Single box model results similar when applied 
accordingly (fully mixed)

• StM and the ART calibration databases can be used:
• For model applicability testing
• To assign similar exposure groups
• To identify relevant exposure determinants
• To quantify the exposure determinants (e.g. source, handling 

energy factor) 

Ratio of predicted (PRED) and measured exposure (EXP) 
assigned for various occupational exposure scenarios.



Summary of mass-balance models
• Widely used and well accepted

• Can be very dynamic but preserves transparency
• Available knowledge (parameterization) defines the model complexity

• Less knowledge more precautionary

• NF/FF model precision is good, similar results when single box model, 
when applied accordingly

Free 
parameters

Variables
𝑆𝑆, [X s-1] 𝑉𝑉𝐹𝐹𝐹𝐹, 

[m3]
𝑉𝑉𝑁𝑁𝑁𝑁, 
[m3]

𝛽𝛽, [m3s-1] 𝑄𝑄𝐹𝐹𝐹𝐹, 
[m3s-1]

𝜀𝜀𝐿𝐿𝐿𝐿 , [-] 𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿, [-] 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿, 
[m3s-1]

𝜀𝜀𝑅𝑅,𝐺𝐺𝐺𝐺, [-] 𝑄𝑄𝑅𝑅,𝐺𝐺𝐺𝐺, 
[m3s-1]

1 WC 20 8 20 0 0 0 0 0 0
2 WC/Mo 20 8 20 WC 0 0 0 0 0
1 to 8 WC/Mo WC/DP WC/DP WC/DP WC/DP WC/DP WC/DP WC/DP 0 0
4 to 8 Mo/Me DP DP DP DP Me Me Me DP DP
4 to 8 Mo/Me DP/Me DP/Me DP/Me DP/Me Me Me Me DP/Me DP/Me

Example of parameterization in Tiered approach: WC = worst case, DP = Default 
parameterization, Mo = modelled and Me = measured,.
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Penny Nymark, Martine Bakker , Susan Dekkers et al., (2020) Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety 
Assessment Practices. Small 16, 1904749. https://doi.org/10.1002/smll.201904749
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Key points

• Use for exposure analysis is well established
• Model parameterization, such as conservativity, is well-justified and 

transparent
• Model limitations, variation and uncertainty evaluation is well 

established and transparent
• Model developmental opportunities are unlimited
• Exposure data with contextual information is needed to understand 

appropriate model parametrization and limitations
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