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Mass balance modelling approach
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Mass-balance models

Example: General form of indoor mass
balance model (William Nazaroff, 1989)
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Example: NF/FF model Validation (Furtaw et

al., 1996)
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Figure 7. Experiment No. 2. Concentrations in breathing zone (0.4
meters from source) exceed well-mixed model predications.

Applied long time in exposure sciences: E.g. NF/FF model (Hemeon, 1955) and multi-
compartment model (Nazaroff, 1989)

Validated and tested®: Langstroth and Gillespie (1947), Corner and Pendlebury (1951),
Nazaroff (1989), Furtaw et al. (1996), Nicas (1996;2016), Zhang et al. (2009), ...

Regulatory applicability evaluated (Jayjock et al., 2011, EPA???)

Models are widely available: E.g. PANDORA, MOEEBIUS, CONTAM, IH-MOD 2.0, TEAS,
GuideNano, and ConsExpo

Broadly developed, such as:
e Bayesian approach (e.g. Zhang et al. 2009)

* Physical and chemical processes: e.g. deposition, coagulation, condensation, evaporation,
and chemical transformations (e.g. Seinfeld & Pandis, 2016)

* Parameter measurements: Emission libraries (VOC ~9000, mVOC ~2000), emission control
elffizcgcl:yé)libraries (>400), air mixing (~100) and ventilation (Q) (see review from Koivisto et
al.

e Default values (e.g. Bremmer et al., 2006 and Oltmanns et al., 2015)
Can be combined with other models: E.g.

e Ambient air pollution (Hussein et al. 2015),

e Surface contamination (Schneider et al. 1999), and

* Physiologically based toxicokinetic models (Webster et al. 2016)

Applicable for both consumer and occupational exposure assessment

*Validation = Testing that the model theory (within boundaries) agree with
observations (within tolerances) and computational algorithms are correct.


https://www.tandfonline.com/doi/abs/10.1080/10789669.2011.579877
https://www.moeebius.eu/images/MOEEBIUS_D3.5_MOEEBIUS_Indoor_Air_Quality_Assessment_Models_V1.0.pdf
https://www.nist.gov/services-resources/software/contam
https://ihmod.org/
https://www.easinc.co/
https://tool.guidenano.eu/
https://www.rivm.nl/en/consexpo

Parameterization

Easy to understand:

e Parameters are physical quantities (measurables)
* No conversions (“as observed”)

e Variation and uncertainties can be quantified

Parameters relative effects are easy to estimate (e.g. particle
removal rate via deposition vs. ventilation):
e (Can be used to justify complex models simplification!

Can be extended for unique processes, such as e.g.:

* Air flows across open/closed doors (McGarth et al. 2014)
e Air cleaner particle removal rates (Mglgaard et al. 2015)

e Photoactive surfaces (Shayegan et al. 2018)

e Recirculation air filtration efficiencies from manufacturers

Conservative estimate for
AER: Lowest 5% percentile

More realistic AER estimate:
Mean 1.06 [0.45 (25%); 1.32 (75%)]
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Conservativity

e Defined by parameterization and model construct 1

High

* Follows “truly” tiered approach: Reducing model complexity
increases conservativity (e.g. 1-parameter model very
simple but highly conservative)

e Conservativity is well-justified (i.e., can be quantified) and is °
not only based on model variation or uncertainty

Level of conservatism

N

» Conservativity can be assigned parameter basis, such as e.g. source is _
measured but use conditions are not specified = conservative single 8 Tielemans et al. (2007)
box model Low High
Uncertainty
° Common default ValueS can be SEt at international Ievel to Figure 1. Tiered exposure assessment approach in relation to

uncertainty and level of conservatism.

ensure harmonization and conservativity



PRED/EXP

PRED/EXP

Predictability (model testing/validation/...)

Exposure to volatiles (solvent)
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Ratio of predicted (PRED) and measured exposure (EXP)
assigned for various occupational exposure scenarios.



Summary of mass-balance models

e Widely used and well accepted

Pr.ov

e Can be very dynamic but preserves transparency VSE
e Available knowledge (parameterization) defines the model complexity 27 e poor
* Less knowledge more precautionary = oo/ e A i
e NF/FF model precision is good, similar results when single box model, 25\‘«\“

when applied accordingly L

Example of parameterization in Tiered approach: WC = worst case, DP = Default
parameterization, Vlo = modelled and Me = measured,.
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Penny Nymark, Martine Bakker , Susan Dekkers et al., (2020) Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety
Assessment Practices. Small 16, 1904749. https://doi.org/10.1002/smll.201904749
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Key points

e Use for exposure analysis is well established

 Model parameterization, such as conservativity, is well-justified and
transparent

 Model limitations, variation and uncertainty evaluation is well
established and transparent

* Model developmental opportunities are unlimited

e Exposure data with contextual information is needed to understand
appropriate model parametrization and limitations
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