

Requirements for the validation of exposure models

Dr. Dorothea Koppisch IFA, Germany

Theoretical Background and Application of Occupational Exposure Models

Workshop, 20th October 2020

Different aspects for the validation / evaluation of models

- Internal (conceptual) evaluation:
 - Check if the model concept and the theory behind it is sound
 - Uncertainty analysis
- Operational analysis:
 - Check if the tool in which the model is imbedded is user-friendly
 - Check if the between-user variability is not too high
- External validation:
 - Comparing of model predictions with measured data,
 - Check if the output is accurate and precise

After: Tischer et al. (2017) Ann Work Exp Health; 61: 911–920

Internal (conceptual) evaluation

In order to check if the concept and theory behind a model is sound the following questions (and more) have to be answered:

- Is information on the model background, the used principles and all methods used to derive the model equations well documented and publicly available?
- Is the applicability domain well described by the model developers?
- Are the model assumptions plausible and consistent with established knowledge and theories?
- How uncertain are the model assumptions and determinants?

Operational analysis

- Methods for investigating the user-friendliness
 - Telephone interviews / asking users to fill in questionnaires
 - Usability testing: creating a scenario, the users then have to perform a list of tasks while observers watch and take notes
 - Usability inspection: a set of methods where an evaluator inspects a user interface judging its compliance with recognized usability principles
- Methods for investigating the between-user variability / reliability
 - Asking a group of users to estimate independently different exposure scenarios giving them the same description of work places and then comparing the individual results
 - Can be influenced by the user interface in which the model is implemented ("a tool is more than a model")

External validation

Comparing model predictions with measured data, to check if the output is accurate and precise

- Statistical parameters:
 - Correlation coefficients
 - Bias and precision
 - Ratios of the AM (or GM) of measurements over the AM (or GM) of the tool estimates
 - Percentage of measurements that exceed the respective tool estimate as a measure for the conservatisms of the model respectively the percentile that is estimated
- Pitfalls:
 - All factors needed for the calculation of the tool estimate must be documented for the measurement values
 - Influence of variability of exposure height

Is the output accurate and precise? Theory:

Is the output accurate and precise? Reality:

- High variability of exposure height at real working places leads to "clouds" in external validation
- This does not mean, that the model is bad, but that models in occupational hygiene have to take into account variability

Source: E-TEAM: External validation for volatile liquids
Van Tongeren et al. (2017)
Ann Work Exp Health; 61: 921-938

External validation: Incorporating variability

Percent of measurements that exceed the respective tool estimate:

• ECETOC TRAv2: 26

• ECETOC TRAv3: 32

EMKG-EXPO-Tool: 5

STM, 90. percentile: 12

Source:

Van Tongeren et al. (2017) Ann Work Exp Health; 61: 921-938

External validation: Incorporating variability

Interval of percentiles of the Stoffenmanager estimate	Expected percentage of measurements	Measurements within the intervals of estimated percentiles handling of powders and granules	
		number	%
0-50	50	161	41
>50 - 60	10	43	11
>60 - 70	10	51	13
>70 - 75	5	22	6
>75 - 80	5	20	5
>80 - 90	10	46	12
>90 - 95	5	26	7
>95 - 100	5	21	5
CHI ²		13.90	p>0.05

Number and percentage of measurements that fall into the respective interval of the Stoffenmanager estimate. Data for inhalable dust during the handling of powders and granules.

Source:

Koppisch et al. (in preparation): Variability in exposure level and model validation – interval testing

Thank you for your attention.

dorothea.koppisch@dguv.de

Institute for Occupational Safety and Health of the German Social Accident Insurance

